Assessing Fairness in Open-Source Face Mask Detection Algorithms

or, how (not) to design and deploy your hybrid AI model responsibly

Marco Zullich

Lecturer

University of Groningen (NL)

Giovanni Santacatterina

PhD Student

University of Trieste (IT)

Note: this presentation is released with a <u>CC-BY-SA</u> Creative Commons license: every image here presented is either protected by CC-BY-SA license, or, unless specified otherwise, public domain or own work.

Computer Vision & Object Detection

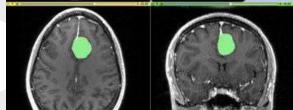
<u>Computer vision</u> "Teaching" the computer to "see" Image classification

Object detection

Instance/Semantic segmentation

Image credits:

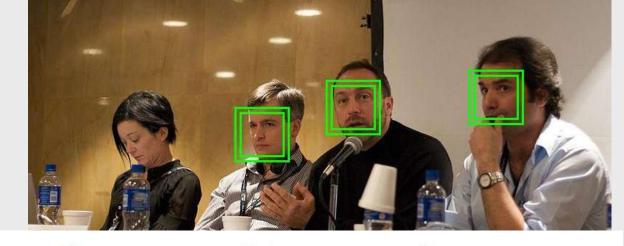
<u>Detected-with-YOLO</u> by MTheiler on Wikimedia Commons (CC-BY-SA) <u>MeningiomaMRISegmentation</u> by Tatianakashunis on Wikimedia Commons (CC-BY-SA)



hippo

Face recognition and detection (FD)

<u>Face detection</u> coarsely localize instances of (human) faces in images



Detection

Is there a face in the image?

Scans the image to detect

can be accomplished in

relies on brightness

Convolutional Neural Networks (CNN) which

intensities and

features.

many ways including the

Viola-Jones method which

search the image for specific

the presence of face(s). This

Identification

Whose face is this?

Compares selected image to images found in a database, known as a gallery. A match is found by finding the image with the minimal distance from the input image, thereby **identifying** the face in the image.

Verification

Do these two faces match?

Compares two images of an individual by comparing the distance between them within a certain threshold to **verify** if the image contains the same identity. The model does not need to know the identity to check for a match.

Classification

What can we gather from the face?

A model such as a CNN is used to extract features from an image to determine a variety of attributes such as age, gender, or emotional state. These methods are referred to as facial attribute and expression classifications.

Image credits:

<u>Face detection</u>, by Sylenius on Wikimedia Commons (CC-BY-SA)

The Alan Turing Institute, as adapted by the European Parliament's analysis on Facial Recognition regulation in the context of the "AI Act" (2023)

Face mask detection (FMD)

Coarse localization of faces

Identify whether mask is (not) worn

Image credit: modification of one picture from the "<u>Face-Mask-Detection</u>" dataset, provided with MIT license.

Why FMD?

COVID19 pandemic Face mask mandates Need to dedicate personnel to check compliance

Can use a computer program to check compliance in a (semi)automatic way

Our previous experience

Image by Herbfagus, CC-BY-SA 4.0 <u>https://commons.wikimedia.org</u> /wiki/File:Raspberry Pi 3 Model <u>B.png</u>

«YOLO-based face mask detection on low-end device using pruning and quantization» [1]

Goal: produce a small model for running 24/7 on inexpensive hardware, focus not only on accuracy

«Can we assess our model beyond speed of inference and predictive accuracy?»

Authors' images used with consent of the people depicted. Pictures are not reusable.

Issues with FD (inspired from [3])

Fairness / Bias

Different predictive accuracy across different demographic variables (protected attributes)

High FPs

Accuracy is only one side of the spectrum What is an acceptable level of Fals<u>e Positives?</u>

Issues with FD (continued)

Privacy

Datasets are often constructed without the express consent of the people depicted in them

Some applications of FD are heavily restricted or banned under the new EU AI Act [2]

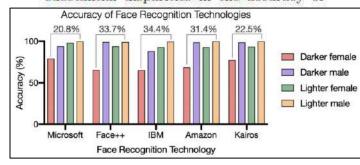
Bias in FDs

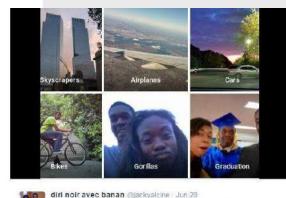
[4] Gender Shades: Intersectional Accuracy Disparities in Commercial Gender Classification*

Joy Buolamwini MIT Media Lab 75 Amherst St. Cambridge, MA 02139 JOYAB@MIT.EDU

Timnit Gebru TIMNIT.GEBRU@MICROSOFT.COM Microsoft Research 641 Avenue of the Americas, New York, NY 10011

> We evaluate 3 commercial gender classification systems using our dataset and show that darker-skinned females are the most misclassified group (with error rates of up to 34.7%). The maximum error rate for lighter-skinned males is 0.8%. The substantial disparities in the accuracy of





Google Photos, y'all

[6]

[5]

boogle Photos, y'all My friend's not a gorilla

Google Mistakenly Tags Black People as 'Gorillas,' Showing Limits of Algorithms

By <u>Alistair Barr</u> Follow Updated July 1, 2015 3:41 pm ET

Face Recognition Performance: Role of Demographic Information

Brendan F. Klare, Member, IEEE, Mark J. Burge, Senior Member, IEEE, Joshua C. Klontz, Richard W. Vorder Bruegge, Member, IEEE, and Anil K. Jain, Fellow, IEEE

50-70 years old). Experimental results demonstrate that both commercial and the nontrainable algorithms consistently have lower matching accuracies on the same cohorts (females, Blacks, and age group 18-30) than the remaining cohorts within their demographic. Additional experiments investigate the impact of

When It Comes to Gorillas, Google Photos Remains Blind

[7]

Google promised a fix after its photo-categorization software labeled black people as gorillas in 2015. More than two years later, it hasn't found one.

[8] Google's Photo App Still Can't Find Gorillas. And Neither Can Apple's.

Eight years after a controversy over Black people being mislabeled as gorillas by image analysis software — and despite big advances in computer vision — tech giants still fear repeating the mistake.

By Nico Grant and Kashmir Hill

May 22, 2023

Which are the culprits?

Hand-crafted features

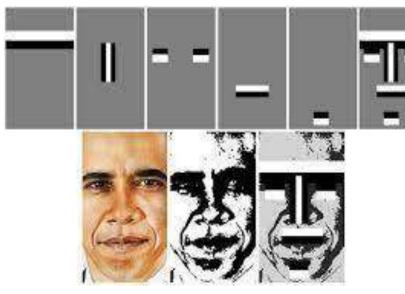


Image from Kadir, Kushsairy, et al. "A comparative study between LBP and Haar-like features for Face Detection using OpenCV." 2014 4th International conference on engineering technology and technopreneuship (ICE2T). IEEE, 2014.

Data

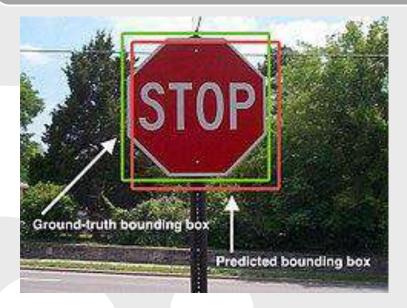


Image credits: Intersection over Union - object detection bounding boxes by Pmigdal on Wikimedia Commons (CC-BY-SA)

Does it translate to FMD?

[9]

Boosting Fairness for Masked Face Recognition

Jun Yu University of Science and Technology of China Hefei, China harryjun@ustc.edu.cn

Zeyu Cui University of Science and Technology of China Hefei, China mg980806@mail.ustc.edu.cn Xinlong Hao* University of Science and Technology of China Hefei, China haoxl@mail.ustc.edu.cn

Peng He University of Science and Technology of China Hefei, China hp0618@mail.ustc.edu.cn

Tongliang Liu Trustworthy Machine Learning Lab, The University of Sydney Sydney, Australia tongliang.liu@sydney.edu.au

Figure 2: Some samples of MS1M dataset. Face images without a mask (left) and with a mask (right).

We don't know...

[10] Bias-Aware Face Mask Detection Dataset

Alperen Kantarcı^{a,*}, Ferda Ofli^b, Muhammad Imran^b, Hazım Kemal Ekenel^a

^aDepartment of Computer Engineering, Istanbul Technical University, Istanbul, Turkey ^bQatar Computing Research Institute, Hamad Bin Khalifa University, Doha, Qatar

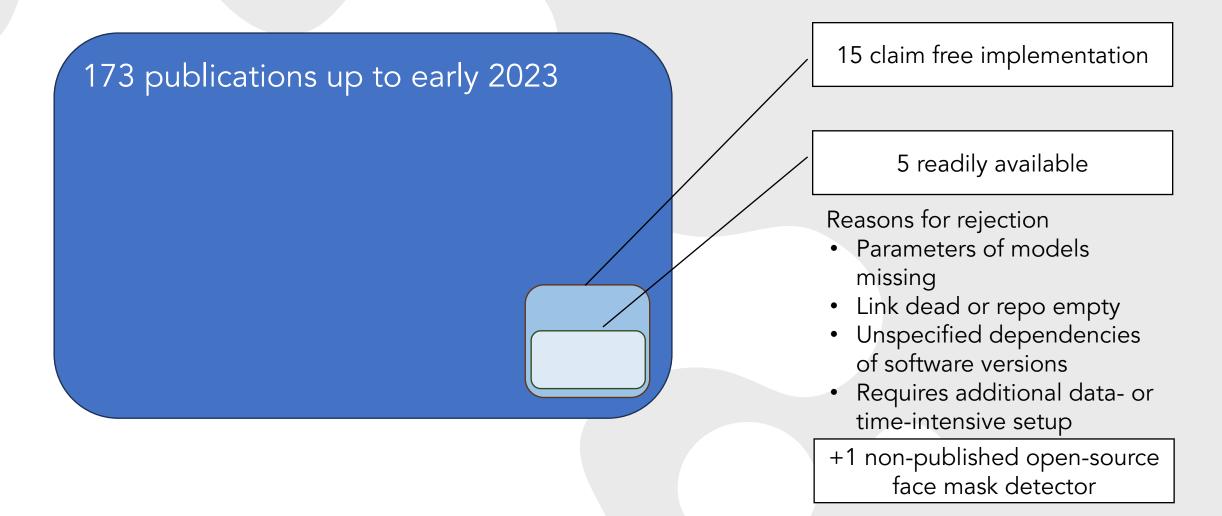
6. Conclusions

We studied the problem of face mask detection during the COVID-19 pandemic with particular focus on dataset bias. Face mask detection problem has been an understudied sub-problem of face and object detection. In order to help society during the COVID-19 pandemic, many researchers across the world rapidly focused on the problem. However, majority of the earlier work has simply focused on training new architectures with the limited number of face occlusion datasets.

In this work, we introduced a novel face mask detection dataset named as Bias-Aware Face Mask Detection (BAFMD) dataset. To the best of our knowledge, it is the first face mask detection dataset that has been collected with a focus on mitigating demographic bias. Unlike most publicly available datasets, our dataset contains real-world face mask images with a more balanced distribution across different demographics, e.g., gender, race and age.

The setting

Survey publications introducing face mask detectors



The models

Table 1. List of relevant works with publicly accessible code and model parameters which we identified and used in the present work. ^(*) indicates that a work is not part of a scientific publication, but it is released solely as a GitHub repository. ^(**) for MOXA, we make use of the YOLOv3 implementation. For additional information on the implementation details, see Section 3.1.

Name	Ref.	Implementation details	Language/library		
Face-Mask-Detection (FMD)(*)	[21]	CNN using pre-trained face detec- tor	TensorFlow		
Maskd	[22]	CNN using pre-trained face detec- tor	TensorFlow		
Modified-Yolov4Tiny-RaspberryPi (MYTR)	[16]	YOLOv4-tiny adapted for low-end device	PyTorch + TFLite		
MOXA ^(**)	[20]	YOLOv3, YOLOv3-tiny, SSD, Faster-RCNN	Darknet		
RHF	[12]	Faster-RCNN	PyTorch		
waittim-mask-detector (waittim)	[34]	custom YOLO	PyTorch		

Identify possible datasets for assessing demographic fairness

Bias Aware Face Mask Detection Dataset (BAFMD)

Image credits: Adaptation from [10]

FairFace

Age = 3-9 Race = Southeast Asian Sex = Male

Age = 60-69 Race = Middle Eastern Sex = Male

Adaptation from [11]

Age = 20-29 Race = Black Sex = Female

Age = 30-39 Race = White Sex = Feale

Fairness [13]

Fairness >> Equal treatment >> Equal probabilities

Binary support

Target variable YPrediction \hat{Y}

 $P(\hat{Y} = 0 | A = 0, Y = 0) = P(\hat{Y} = 0 | A = 1, Y = 0)$ $P(\hat{Y} = 1 | A = 0, Y = 1) = P(\hat{Y} = 1 | A = 1, Y = 1)$

Protected attribute A

Carry out a statistically rigorous analysis of fairness

Evaluation of object detectors

«Localization

error»

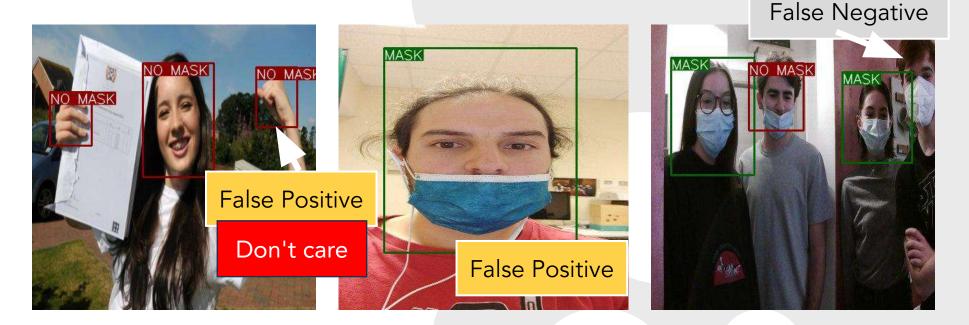


Image credit: modification of one picture from the "<u>Face-Mask-Detection</u>" dataset, provided with MIT license.

[d] [e] Indicators to study Localization rate [b] la MASK True negative rate [g] correct wrong

Image credits: [c], [d]: adaptations from the "Face-Mask-Detection" dataset, provided with MIT license. [e]: adaptation from [10], [g]: adaptation from [11]. Rest: own work

True positive rate

Statistical analysis (frequentist)

Our indicator are rates

Binomial A/B testing

Difference in rates between two populations: is it significant? $\begin{bmatrix} H_0 : r_1 = r_2 \\ H_1 : r_1 \neq r_2 \end{bmatrix}$

$$z^{\star} = \frac{\hat{r}_1 - \hat{r}_2}{\sqrt{\frac{n_1\hat{r}_1 + n_2\hat{r}_2}{n_1 + n_2}} \left(1 - \frac{n_1\hat{r}_1 + n_2\hat{r}_2}{n_1 + n_2}\right) \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}$$

Effect size

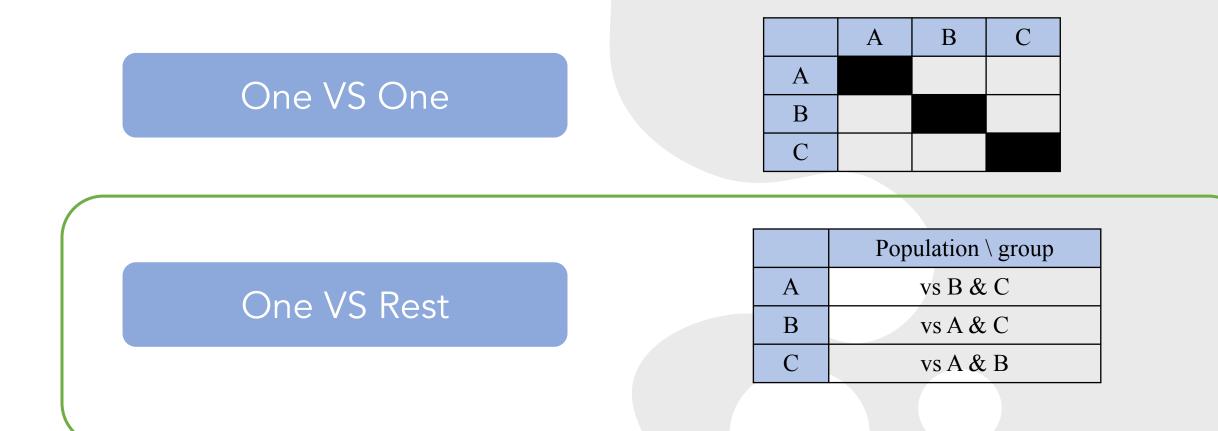
Quantifies *magnitude* of difference between groups

Cohen's h

$$h = \operatorname{abs}(2\operatorname{arcsin}\sqrt{\hat{r}_1} - 2\operatorname{arcsin}\sqrt{\hat{r}_2})$$

h ~ 0.2 Small h ~ 0.5 Medium h ~ 0.8 Large

Comparison between more than 2 groups



Results – FairFace - localization

		Ū		ш								
		0	MYTR			3	моха			ŀ	RHF	
Sex	$\hat{\boldsymbol{\pi}}_i$	n _i	p	h	$\hat{\pi}_i$	ni	p	h	$\hat{\boldsymbol{\pi}}_i$	ni	p	h
Female	0.9922	5162	0.0011	0.0629	0.9872	5162	0.1531	0.0275	0.8807	5162	0.0000	0.1924
Male	0.9857	5792			0.9839	5792			0.8116	5792		
Race	$\hat{\pi}_i$	n _i	p	h	$\hat{\pi}_i$	ni	p	h	$\hat{\pi}_i$	n _i	P	h
Black	0.9826	1556	0.0133	0.0616	0.9826	1556	0.3124	0.0266	0.7584	1556	0.0000	0.2561
East Asian	0.9910	1550	0.3757	0.0255	0.9903	1550	0.0857	0.0511	0.8865	1550	0.0000	0.1433
Indian	0.9855	1516	0.1912	0.0342	0.9875	1516	0.4869	0.0198	0.8127	1516	0.0003	0.0977
Latino/Hispanic	0.9975	1623	0.0003	0.1271	0.9889	1623	0.2113	0.0355	0.8823	1623	0.0000	0.1294
Middle Eastern	0.9917	1209	0.3008	0.0337	0.9793	1209	0.0575	0.0535	0.8528	1209	0.3818	0.0269
Southeast Asian	0.9866	1415	0.4003	0.0230	0.9894	1415	0.1871	0.0401	0.8848	1415	0.0000	0.1355
White	0.9871	2085	0.4072	0.0195	0.9808	2085	0.0476	0.0457	0.8374	2085	0.3445	0.0229
Age	$\hat{\pi}_i$	n _i	p	h	$\hat{\pi}_i$	n _i	p	h	$\hat{\pi}_i$	n _i	p	h
0-2	0.9849	199	0.6033	0.0345	1.0000	199	0.0840	0.2438	0.9347	199	0.0004	0.2993
3-9	0.9904	1356	0.5399	0.0185	0.9956	1356	0.0009	0.1201	0.8990	1356	0.0000	0.1858
10-19	0.9924	1181	0.2128	0.0417	0.9865	1181	0.7685	0.0092	0.8704	1181	0.0084	0.0839
20-29	0.9885	3300	0.8518	0.0038	0.9867	3300	0.4971	0.0143	0.8479	3300	0.4818	0.0147
30-39	0.9854	2330	0.0825	0.0386	0.9850	2330	0.8179	0.0053	0.8283	2330	0.0175	0.0547
40-49	0.9882	1353	0.8239	0.0063	0.9800	1353	0.0739	0.0484	0.8012	1353	0.0000	0.1296
50-59	0.9912	796	0.4984	0.0264	0.9799	796	0.1713	0.0467	0.8204	796	0.0544	0.0689
60-69	0.9938	321	0.3884	0.0558	0.9688	321	0.0114	0.1176	0.7913	321	0.0080	0.1417
70+	0.9915	118	0.7753	0.0283	0.9576	118	0.0110	0.1757	0.8051	118	0.2393	0.1041

oup size p-value fect size

Rate

Three models (FMD, Maskd, waittim) not working correctly

Performance on rates seems good

Some differences are significant and effect size noticeable

Results – FairFace – True Negative Rate

		1	MYTR	8			MOXA			F	RHF	
Sex	$\hat{\pi}_i$	n _i	p	h	$\hat{\boldsymbol{\pi}}_i$	ni	p	h	$\hat{\pmb{\pi}}_i$	ni	p	h
Female	0.2087	5122	0.0906	0.0326	0.9939	5096	0.0709	0.0352	0.9996	4546	0.2757	0.0233
Male	0.2221	5709			0.9909	5699			0.9989	4701		
Race	$\hat{\pi}_i$	n _i	p	h	$\hat{\boldsymbol{\pi}}_i$	n _i	p	h	$\hat{\pi}_i$	n _i	p	h
Black	0.2276	1529	0.2250	0.0332	0.9908	1529	0.4783	0.0189	0.9992	1180	0.9037	0.0037
East Asian	0.1816	1536	0.0004	0.0992	0.9935	1535	0.5696	0.0162	1.0000	1374	0.2689	0.0596
Indian	0.2430	1494	0.0059	0.0753	0.9953	1497	0.1505	0.0442	0.9992	1232	0.9402	0.0023
Latino/Hispanic	0.2508	1619	0.0002	0.0979	0.9913	1605	0.6073	0.0135	1.0000	1432	0.2572	0.0599
Middle Eastern	0.1910	1199	0.0270	0.0691	0.9907	1184	0.5037	0.0198	0.9990	1031	0.7920	0.0082
Southeast Asian	0.2249	1396	0.3728	0.0254	0.9943	1400	0.3646	0.0276	0.9992	1252	0.9540	0.0017
White	0.1934	2058	0.0061	0.0682	0.9907	2045	0.3569	0.0218	0.9983	1746	0.1049	0.0367
Age	$\hat{\pi}_i$	n _i	p	h	$\hat{\pi}_i$	n _i	р	h	$\hat{\pmb{\pi}}_i$	ni	p	h
0-2	0.1633	196	0.0713	0.1366	0.9799	199	0.0430	0.1116	1.0000	186	0.7045	0.0556
3-9	0.1906	1343	0.0167	0.0712	0.9919	1350	0.8363	0.0059	0.9992	1219	0.9312	0.0026
10-19	0.2048	1172	0.3327	0.0302	0.9914	1165	0.7112	0.0112	1.0000	1028	0.3492	0.0584
20-29	0.2220	3262	0.3047	0.0214	0.9920	3256	0.8167	0.0048	0.9996	2798	0.3574	0.0232
30-39	0.2121	2296	0.6309	0.0113	0.9939	2295	0.3262	0.0241	0.9990	1930	0.6160	0.0121
40-49	0.2117	1337	0.6970	0.0114	0.9940	1326	0.4612	0.0227	0.9982	1084	0.1657	0.0364
50-59	0.2522	789	0.0097	0.0931	0.9923	780	0.9991	0.0000	0.9985	653	0.4555	0.0254
60-69	0.2539	319	0.0927	0.0929	0.9871	311	0.2892	0.0535	1.0000	254	0.6565	0.0558
70+	0.2991	117	0.0275	0.1935	1.0000	113	0.3469	0.1765	1.0000	95	0.7874	0.0553

Three models (FMD, Maskd, waittim) not working correctly

MYTR – performance is terrible

Bias seems overall better w.r.t. localization

Results - BAFMD

One model (waittim) not working correctly

Performance ranges a lot

Table 7.: Results concerning the localization rate, true positive rate, and true negative rate on the dataset BAFMD. $\hat{\pi}_i$ is the rate achieved by the model on a specific group, n_i indicates the size of the group in the dataset, while p is the p-value corresponding to the unpaired binomial test; h refers to the Cohen's h, measuring the effect size, p-values and effect sizes are shown only once per attribute since they all have binary support, and are hence the same for both groups. p-values smaller than 0.05 are shown in **boldface**—they indicate a significant difference with respect to the other groups of the same attribute. The effect size is also indicated in bold when the difference is significant and the h-number is larger than 0.2, denoting a *severe* bias (ref. Section 6). As introduced in Section 7 and Section 7.1, the models FMD, Maskd, and waittim fail to produce valid outputs on FairFace, and hence do not appear in this table.

				FMD					Maskd	8			MYTR				MOXA				RHF	
~	Sex	x,	ni	р	h		π,		р	h	π,	n _i	р	h	π,	n _i	р	h	π _i	ni	р	h
VUIZATION	F M	0.5116			0.00	32	0.5751 0.6074		0.3864	0.0657	0.1531 0.1547		0.9549	0.0044	0.8382	100	6 0.9580)	0.0041	0.9682 0.9226		0.0082	0.2053
ALD	Skin Color	π,	n _i	p	h		π,	n;	p	h	ħ,	ni	p	h	π,	n;	P	h	\$,	nj	p	h
LOC	Dark Light	0.4600 0.5393			0.15	88	0.5440 0.6180	77.2	0.0569	0.1501	0.1560 0.1528	100	0.9109	0.0089	0.8000 0.8584	1000	0.0451	0.1557	0.9320 0.9528	12050	0.2469	0.0896
\$	Sex	Âι	ni	р	h	5	π,	n_l	р	h	π,	ni	р	h	Â,	n;	p	h	Â,	ni	р	h
POSITIVES	F M	0.9618 0.9763		100000	0.08	43	0.9732 0.9872		0.3780	0.1021	0.5217 0.8519	23 27	0.0111	0.7373	0.9876		0.3173	0.0935	0.8111 0.8434		0.3321	0.0855
_	Skin Color	Â,	ni	p	h	í.	π,	n _t	p	h	ħ,	ni	p	h	ħ,	n,	P	h	π,	ni	p	h
TRUE	Dark Light	0.9753 0.9661			0.05	47	0.9870 0.9760		0.4213	0.0826	0.6667 0.7188	18 32	0.6997	0.1130	0.9938 0.9907		0.7246	0.0355	0.7416 0.8710	0.0	0.0002	0.3317
8	Sex	Â,	n,	р	h		Â,	n,	р	h	Â,	n;	р	h	Â,	n,	р	h	Â,	n _i	р	h
NEGATIVES	F M	0.9347 0.9216		0.8017	0.05	08	0.9000 0.8571		0.5019	0.1318	1.0000	30 27	1.0000	0.0000	0.8571 0.8269		0.6776	0.0829	1.0000 0.9589		0.0984	0.4083
DEN	Skin Color	π,	nį	p	h	i.	πī	n,	P	h	π,	ni	р	h	π,	ni	p	h	Â,	nį	p	h
TRUE	Dark Light	0.9706 0.9048	1000	0.2319	0.28	27	0.8974 0.8657		0.6307	0.0983	1.0000 1.0000	21 36	1.0000	0.0000	0.8000 0.8689		0.3540	0.1863	0.9880 0.9636	10.0	0.3376	0.1644

Notable bias in some cases (exp. RHF for skin color)

Dataset size too small for in-depth eval

Wrapping up

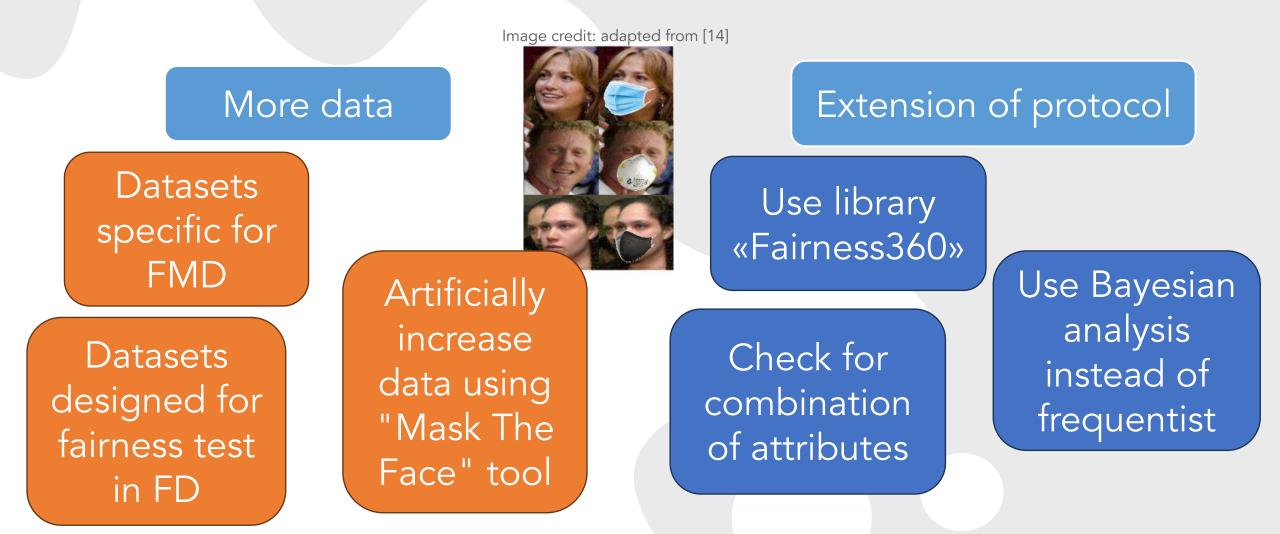
Fairness in FMD algorithms for guaranteeing equal treatment in protected groups FD algorithms have been proven to be biased exp. towards race, sex, age

Gather 6 (out of 170+ publications) open-source implementations of FMDs

Assess performance on localization and true positives/negatives rates across demographic variables on two datasets

Main results	Bias exists but not excessive	Performance range a lot, unacceptablee in many cases	Too few open implementations
-----------------	-------------------------------------	--	---------------------------------

Limitations & Future work



References

[1] Liberatori, Benedetta, et al. "Yolo-based face mask detection on low-end devices using pruning and quantization." 2022 45th Jubilee International Convention on Information, Communication and Electronic Technology (MIPRO). IEEE, 2022.

[2] Madiega, Tambiama and Mildebrath, Hendrik. "Regulating facial recognition in the EU." EPRS | European Parliamentary Research Service, 2021

[3] Najibi, Alex. "Racial Discrimination in Face Recognition Technology." Science in the News Harvard Blog, Special Edition on Science Policy and Social Justice. 2021

[4] Buolamwini, Joy, and Timnit Gebru. "Gender shades: Intersectional accuracy disparities in commercial gender classification." Conference on fairness, accountability and transparency. PMLR, 2018.

[5] Klare, Brendan F., et al. "Face recognition performance: Role of demographic information." IEEE Transactions on information forensics and security 7.6 (2012): 1789-1801.

[6] Barr, Alistair. "Google Mistakenly Tags Black People as 'Gorillas,' Showing Limits of Algorithms." The Wall Street Journal, 2015.[7] Simonite, Tom. "When It Comes to Gorillas, Google Photos Remains Blind." Wired, 2018.

 [8] Grant, Nico and Hill, Kashmir. "Google's Photo App Still Can't Find Gorillas. And Neither Can Apple's." The New York Times, 2023.
[9] Yu, Jun, et al. "Boosting fairness for masked face recognition." Proceedings of the IEEE/CVF International Conference on Computer Vision. 2021.

[10] Kantarcı, Alperen, et al. "Bias-Aware Face Mask Detection Dataset." arXiv preprint arXiv:2211.01207 (2022).

[11] Kärkkäinen, Kimmo, and Jungseock Joo. "Fairface: Face attribute dataset for balanced race, gender, and age." arXiv preprint arXiv:1908.04913 (2019).

[12] Mittal, Surbhi, et al. "Are Face Detection Models Biased?." 2023 IEEE 17th International Conference on Automatic Face and Gesture Recognition (FG). IEEE, 2023.

[13] Hardt, Moritz, Eric Price, and Nati Srebro. "Equality of opportunity in supervised learning." Advances in neural information processing systems 29 (2016).

[14] Anwar, Aqeel, and Arijit Raychowdhury. "Masked face recognition for secure authentication." arXiv preprint arXiv:2008.11104 (2020).

Thanks for the attention!

Questions?

www.zullich.it

